Model-Based Approaches to
Embedded Software Design

Edward A. Lee
UC Berkeley & GSRC

SRC ETAB Summer Study
Colorado Springs, June 25-26, 2001

Why is Embedded Software an Issue
for Semiconductor Manufacturers?

m Silicon without software is getting
rarer.

m Time-to-volume is often dominated
by SW development.

m Software requirements affect
hardware design.

» Embedded SW design is getting

harder (networking, complexity). prime
. . . . example
= Mainstream SW engineering is not today

addressing embedded SW well.

Edward A. Lee, Berkeley, 2

Why is Embedded SW not just
Software on Small Computers?

m Interaction with physical processes
m sensors, actuators, processes
m Critical properties are not all functional
m real-time, fault recovery, power, security, robustness
= Heterogeneous
m hardware/software, mixed architectures
m Concurrent
m interaction with multiple processes
» Reactive
m operating at the speed of the environment &

These feature look more like hardware! ' S

Edward A. Lee, Berkeley, 3

Why not Leave This Problem to the
Software Experts?

E.g. Object-Oriented Design
m Call/return imperative semantics
m Concurrency is via ad-hoc calling conventions
= band-aids: futures, proxies, monitors
m Poorly models the environment
s which does not have call/return semantics
m Little to say about time

Object modeling

«interface» «Interface»
B UL S emphasizes inheritance
— CompositeEntity .
s ity - it o and procedural interfaces.
Mot IR i W T
vcatr
emato "’ZF“""‘”“”’“’ We need to emphasize
| +wrapup|
[[r — concurrency,
W W T T competenstr communication, and
Director omionctor temporal abstractions.

Edward A. Lee, Berkeley, 4

Why not Leave This Problem to the
Software Experts (cont)?

E.g. Real-Time Corba

m Component specification includes:
m worst case execution time
= typical execution time

| m cached execution time

m priority

1,_‘ » frequency

i '4 = importance

L F

LT _
e This is an elaborate prayer...
St

3 E432 Edward A. Lee, Berkeley, 5

Hardware Experts Have Something to
Teach to the Software World

Concurrency

m the synchrony abstraction
m event-driven modeling
Reusability

m cell libraries

J 1 m interface definition
Sesre Reliability
7 m leveraging limited abstractions
£F li m leveraging verification
i 2 -
"l“ 3 Heterogeneity
" o m mixing synchronous and asynchronous designs
%ljfﬁ, m resource management
et
B8 E
5 g i{_ =1 Edward A. Lee, Berkeley, 6

Alternative View of SW Architecture:
Actors with Ports and Attributes

Model of Computation:
connection

Actor > « Messaging schema
Port Link * Flow of control
. , » Concurrency
Attributes Attributes
YT E Examples:
St Synchronous circuits
et Time triggered
-f‘ i * Process networks
e 4) * Discrete-event systems
admeg Attibutes « Dataflow systems
3= |“,,é « Publish & subscribe
&;1} Key idea: The model of computation is part of the framework
i l‘”’ within which components are embedded rather than part of the
fg'%i__ % components themselves.
N 2 Edward A. Lee, Berkeley, 7
Examples of Actors+Ports
Software Architectures
1 VHDL, Verilog, SystemC (Various)

Simulink (The MathWorks)

Labview (National Instruments)

OCP, open control platform (Boeing)

SPW, signal processing worksystem (Cadence)
System studio (Synopsys)

ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)

1/0 automata (MIT)

Polis & Metropolis (UC Berkeley)

Ptolemy & Ptolemy Il (UC Berkeley)

Edward A. Lee, Berkeley, 8

What an Embedded Program Might
Look Like

cantroller I
S

dg

e

Edward A. Lee, Berkeley, 9

Simple Example: Controlling an
Inverted Pendulum with Embedded SW

The Furuta pendulum has
a motor controlling the
angle of an arm, from
which a free-swinging
pendulum hangs. The
objective is to swing the
pendulum up and then
balance it.

Edward A. Lee, Berkeley, 10

Metaphor for

Disk drive controllers

Manufacturing equipment
Automotive:

m Drive-by-wire devices

m Engine control

m Antilock braking systems, traction control
Avionics

m Fly-by-wire devices

= Navigation

m flight control
Certain “software radio” functions
Printing and paper handling
Signal processing (audio, video, radio)

Edward A. Lee, Berkeley, 11

ERHEl

Execution LM W |

0o 0.5 1.0 1.5

20

. E+mod
An execution of the - meds

25

=il

=]

model displays various L [\ /\V

signals and at the bottom | | ;| _/
produces a 3-D animation 00

0.5 1.0 1.5 2.0

of the physical system.

i
3
£
= A £
; 4 ;.- =
~!%= [Model by Johan Eker
e B
& 3 i . 3 Edward A. Lee, Berkeley, 12

Top-Level Model

FurutaPendulum

ZOH1
dx/dt=f(x, u, 1) |

y=gix. u,)

Plotter for u

—

l FramewCoTrk by Jie Liu I—

L]

PeriodicSampler

3D Viewer

PeriodicSampler2,

cantroller

Sampler

The top-level is a continuous-time

dynamics of the physical system as a set of nonlinear ordinary
differential equations, and encapsulates a closed loop controller.

model that specifies the

Edward A. Lee, Berkeley, 13

A Modal Controller

controller l

The controller
itself is modal,
with three modes

init

mode = 2; stabilizeController.Phi0.value = Phi

Th = region2 || Th < -region2

d;hi Q
true swing-up
Th Q
Th<region1 && Th >-region1
mode =1
dTh mode=
* stabiliz:
cat O
Phi QJ
dPhi < maxSpeed && dPhi > -maxSpeed

of operation,
where a different
control law is
specified for
each mode.

mode

0

| Framework by Xiaojun Liu

Edward A. Lee, Berkeley, 14

The Discrete Controllers

cantroller l

|] Y‘-.. [

—
H

-

L e H

- -

;] el =
-

Three discrete

888 . submodels

: (dataflow
Shas . models) specify
',_ : (control laws for
Ty 4 C { each of three
s 1 A

i : . | modes of
Himil b P i operation.
=1 e 2 - ’ X) . =

!- l .‘..é "j"‘- o - I’Tj—":\j_:b [e
o pmew F T (—-’ fom 2 Lo

£]f‘j [- = =

A s 5 | Framework by Steve Neuendorffer | Lo

g ry — R

& 3 i: i | - | Edward A. Lee, Berkeley, 15

This is System-Level Modeling

SRC funding in system-level modeling, simulation, and

design work 5-10 years ago has had demonstrable impact
via:

m SystemC

VSIA standards efforts
Cadence SPW & VSS
Synopsys Cocentric Studio
Agilent ADS (RF + DSP)

Much of this work is now starting to address embedded
software issues.

Edward A. Lee, Berkeley, 16

The Key Idea

= Components are actors with ports

= Interaction is governed by a model of computation
m flow of control
® messaging protocols
m non-functional properties (timing, resource management, ...)

So what is a model of computation?

m ltis the “laws of physics” governing the interaction between
components

u |t is the modeling paradigm

Edward A. Lee, Berkeley, 17

Model of Computation

What is a component? (ontology)

m States? Processes? Threads? Differential equations?
Constraints? Objects (data + methods)?

What knowledge do components share? (epistemology)
m Time? Name spaces? Signals? State?
How do components communicate? (protocols)

m Rendezvous? Message passing? Continuous-time signals?
Streams? Method calls? Events in time?

m What do components communicate? (lexicon)
m Objects? Transfer of control? Data structures? ASCII text?

Edward A. Lee, Berkeley, 18

Domains — Realizations of Models of
Computation

CSP - concurrent threads with rendezvous
CT - continuous-time modeling
DE - discrete-event systems
DDE - distributed discrete-event systems
DT - discrete time (cycle driven)
FSM - finite state machines
Giotto — time driven cyclic models
GR - graphics
PN - process networks
SDF - synchronous dataflow
xDF — other dataflow

Each of these defines a component ontology and an interaction

semantics between components. There are many more
possibilities!

WL et 8 Ll J i

Edward A. Lee, Berkeley, 19

Hierarchical, Compositional Models

L Domain |

- -

Actors with ports are
better than objects
with methods for
embedded system
design.

Domain

| Domain]

Edward A. Lee, Berkeley, 20

Heterogeneity — Hierarchical Mixtures
of Models of Computation

u Modal Models
m FSM + anything
= Hybrid systems
m FSM+CT
» Mixed-signal systems
m DE+CT
m DT +CT
= Complex systems
m Resource management
m Signal processing
m Real time

Edward A. Lee, Berkeley, 21

Key Advantages

» Domains are specialized
lean

targeted

optimizable
understandable

» Domains are mixable (hierarchically)
m structured
m disciplined interaction
m understandable interaction

Edward A. Lee, Berkeley, 22

Model = Design

= We need modeling “languages” for humans to
realize complex functionality

understand the design

formulate the questions

predict the behavior

The issue is “model” or “design” not “hardware” or “software”

® Investin:

m modeling “languages” for systems
finding the useful abstractions
computational systems theory
composable abstractions
expressing time, concurrency, power, etc.

Edward A. Lee, Berkeley, 23

Composing Systems

» We need systematic methods for composing systems
m component frameworks

composition semantics

on-the-fly composition, admission control

legacy component integration

= Investin:
m methods and tools
reference implementations
semantic frameworks and theories
defining architectural frameworks
strategies for distribution, partitioning
strategies for controlling granularity and modularity

Edward A. Lee, Berkeley, 24

Transformations

= We need theory of transformations between abstractions
relationships between abstractions

generators (transformers, synthesis tools)

multi-view abstractions

model abstractors (create reduced-order models)
abstractions of physical environments

verifiable transformations

® Investin:
m open generator infrastructure (methods, libraries)
m theories of generators
m methods for correct by construction transformers
m co-compilation

Edward A. Lee, Berkeley, 25

Conclusions

= Semiconductor manufacturers should not ignore
embedded software.

m Software experts are unlikely to solve the
embedded software problem on their own.

m Actors with ports are better than objects with
methods for embedded system design.

m Well-founded models of computation matter a
great deal, and specialization can help.

Edward A. Lee, Berkeley, 26

